Emission reductions in industrialized countries and their impacts on developing countries

Structure of session

- Success and failures in industrial country emission reduction
 - The German example
- Potential impacts of industrial country climate policy on developing countries
 - Mitigation
 - Adaptation
 Adaptation

Industrialized country action

- Industrialized countries have had a wide range of experience in greenhouse gas reduction
- Reductions have proved to be much more difficult to achieve than initially thought
- Massive reductions were
 - either linked to far anging structural changes in the economy as in countries in transition
 - due to an increase in relative availability of low carbon fuels
- Improvement in energy efficiency of goods and machinery has been more than offset by an increase in numbers of those items

German emissions path 1990 - 2004

Gas	Base year emission (Mt	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	CO ₂ eq.)															
CO_2	1029.2	-3.8	-8.5	-9.5	-10.9	-10.8	-8.4	-11.3	-12.0	-14.7	-14.0	-12.8	-14.0	-13.4	-14.1	-15.9
CH_4	95.3	-10.0	-16.5	-27.4	-18.8	-20.3	-23.3	-26.7	-31.8	-33.2	-36.9	-39.9	-41.2	-43.6	-48.2	NA
N_2O	84.5	-2.3	+0.5	-3.7	-3.3	-8.5	-9.1	-12.9	-28.7	-32.4	-30.0	-31.1	-31.7	-28.7	-26.5	NA
HFC	6.6						-17.5	+10.2	+10.6	+12.1	+0.0	+21.2	+30.3	+28.8	+28.8	NA
PFC	1.7						+3.7	-12.0	-3.1	-29.4	-53.0	-58.7	-53.0	-47.0	-53.0	NA
SF ₆	7.2						-1.4	-4.4	-7.0	-26.4	-29.2	-32.1	-41.7	-40.3	-37.5	NA
Sum	1224.6	-4.3	-8.7	-10.3	-11.0	-11.2	-10.6	-12.5	-14.6	-17.1	-17.0	-16.1	-17.3	-16.7	-17.6	NA

• Deep reductions in methane, nitrous oxide PFC and SF₆

• Reductions in CO₂, especially until 1994 and 1996-1999 as well as 2003-2005

German transport emissions

German household emissions

Emissions targets over time

Date of target	Base	Target	Gas	Reduction
setting	year	year	covered	
June 1990 (West	1987	2005	Energy-	25%
Germany)			related CO ₂	
November 1990	1987	2005	Energy-	25% (West
(united Germany)			related CO ₂	Germany)
				"significantly more
				than 25%" (East
				Germany)
November 1991	1987	2005	Energy-	25 to 30%
			related CO ₂	
April 1995	1990	2005	Energy-	25%
			related CO ₂	
March 1997	1990	2008-12	CO_2 , CH_4 ,	25%
			N ₂ O	
June 1998	1990	2008-12	Kyoto	21%
			basket	

Targets have been considerably watered down over the years, especially after unification

Climate policy cornerstones

- 1987: Parliamentary enquiry commission "Protection of the earth's atmosphere"
- 1990: "Interministerial Working Group CO₂ Reduction" (IMA)
- First national climate policy programme 1994: focus on EU CO₂/energy tax
- Second National Communication 1997: 143
 measures
- Second national climate policy programme 2000:
 75 measures, indicative sectoral targets
- Interim report on programme 2005: measures reducing 5 Mt in household and 10 Mt in transport

Umbrella instruments

• Pre 1998: waiting for Godot, i.e. the EU CO₂/energy tax

• Post 1998: "Ecotax" on energy with stepwise introduction; many exemptions:

Tax rate (%)100

Voluntary agreements

• 1995 agreement: 10 sectors, specific "up to" 20% reduction (1987- 2005)

no heat use regulation

1996 update: 17 sectors, absolute 20% reduction (1990- 2005), external monitoring

•2000 update: ? sectors, absolute 28% reduction (1990
- 2005)

•2001 update electricity: "up to" 45 Mt CO₂ (1998-2010)

no cogeneration quota

 2005: Voluntary agreement substituted by allocation under ETS, much weaker than 45 Mt CO₂ Industry's fight against emission trading

Industry feared absolute targets

make visible that current voluntary agreements are business as usual

Industry feared auctioning

- transparency of winners and losers
- intense campaign against EU Commission draft using blunt pressure on the commission, newspaper ads, commissioning of "research" on the high costs of trading
- Government supported mandatory "pooling"
 - pool eventually was not introduced
- Persistent special rules for allocation
 - Ignite benchmark, early action,

Renewable energy

Type of renewable	Feed-in-tariff	Installed capacity end	Electricity production		
energy	(Cent/kWh)	2006 (MW)	(TWh, % of total)		
Wind	6.2-9.1	22750	31 (4.8)		
Biomass	8.7 - 10.2	1700	6 (1.2)		
PV	50.6	1500	1 (0.15)		
Small hydro (< 5 MW)	6.7 –7.6	1600	NA		
Geothermal	7.1-8.9	5	0		

Subsidies (million €)

X	1996	1997	1998	1999	2000	2001	2002
Feed-in-law/EEG	301	403	551	639	1136	1380	1680
Investment subsidy	9	9	9	-102	153	102	200
100,000 roofs PV				92	113	113	113
Biofuels					3	5	10
Sum	310	412	560	833	1405	1600	2003

Conclusions on German policy

- Seemingly successful emission reduction
 - 50% "hot air"
 - Build wof East German infrastructure
 - Business as usual voluntary agreements
- Complex maze of hundreds of measures
 - Caters interest groups
- Policies have focused on expensive measures
 Concerning cost-effective measures and market instruments, Germany is a laggard
 - Only semi-hearted implementation of emissions trading

Outlook: 2010 and beyond

Nuclear phase-out

- **•**5- 15% emissions increase until 2025
- **Transport sector: unclear tendency**
 - Trend towards SUVs?
 - High fuel efficient cars, fuel cell?

Households: growth trends

- growth in dwelling space per capita
- "intelligent house" uses more electricity
- Iabelling of consumer goods
- Renewables
 - reach full competitiveness?
- **Use of Kyoto Mechanisms limits risk**

Impacts of mitigation on developing countries

- Any mitigation action in the energy sector will lead to a reduced demand for fossil fuels
 - heavy impact on fuels with a high carbon content.
 - reduced world market prices for these fuels
 - reduced revenues of fossil fuel exporting countries
 - Countries importing fossil fuels will unambiguously profit from the lower prices
- Mitigation policies can lead to increased competitiveness of energy-intensive production, if the latter is based on domestic fossil fuel sources

Impacts of mitigation II

- In the short term, availability of renewable energy technology can be impacted by mitigation measures
- Lower availability and higher price of such technologies for developing countries is possible, if supply cannot cope with demand in the short term
 - PV module prices have not fallen in the last years in the highly subsidized markets of Germany and Japan.
 - German wind turbine producers shunned export markets for a long time due to the high demand in their home market

Impacts of mitigation III

- Subsidies for renewables surpass projected market prices by several orders of magnitude
- Investment at rates derived from market prices will not lead to diversion of renewable technology exports
- Long term availability of renewable energy technologies will be enhanced due to economies of scale that lead to lower prices.
- Sequestration projects can enhance timber supply and reduce revenues from timber sales of other countries
- Climate policy measures will not only generate losses but also benefits, often in the same countries that experience losses

Carbostan and Aeolia

- Conversion of the electricity generation system from coal to wind in Annex B country Aeolia
- Coal exports from developing country Carbostan to Aeolia drop from 10 million t per annum to zero
- Coal market price falls from 20 to 10 € per t.
- Overall coal exports from Carbostan only fall from 50 to 40 million t
- Carbostan claims a loss of 600 million € (1000 million € previous coal export revenues compared to 400 million € after Aeolia's action) due to mitigation

Tempesto and Aeolia

- Due to a new 10,000 MW wind programme in Annex B country Aeolia, all Aeolian wind turbine manufacturers operate at full capacity
- The developing country Tempesto cannot place an order for 100 MW wind turbines with a producer in Aeolia
- It thus has to switch to a turbine producer in Breezia which charges a price of 1200 € per kW installed instead of Aeolia's producers' list price of 1000 € per kW
- Tempesto claims a loss of 20 million € (200,000 €/MW times 100 MW) due to Aeolia's mitigation

Arboria and Verdura

- In 2005, the developing country Arboria approved a CDM afforestation project on 100,000 ha whose first harvest occurs in 2020
- In 2020, the country Verdura logs 10,000 ha and harvests 1 million t of timber
- Due to Arboria's timber supply, timber prices fall from 50 €/t to 45 €/t
- Verdura claims a loss of 5 million € (5 €/t times 1 million t) due to Arboria's sequestration

Neptunia and Montania

- In 2010, the developing country Neptunia builds a seawall on 500 km of coastline
- Due to the high demand for building material, export prices for 1 million t of cement to neighbouring Montania increase from 55 to 65
 €/t
- Montania claims a loss of 10 million € (10 €/t times 1 million t) due to Neptunia's adaptation

Fluvia and Desertum

- In 2010, the developing country Fluvia introduces a new operation plan for its irrigation system to be able to withstand more severe droughts due to projected climate change
- Due to the much lower cost of irrigation farmers expand irrigation and the amount of water discharged to neighbouring Desertum declines by 10%
- Desertum argues that it has to reduce its irrigated area by 100,000 ha and claims a loss of 10 million € (100 €/ha times 100,000 ha) due to Fluvia's adaptation.